
www.manaraa.com

Michigan Technological University Michigan Technological University

Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech

Dissertations, Master's Theses and Master's Reports

2020

DEEP LEARNING OF NONLINEAR DYNAMICAL SYSTEM DEEP LEARNING OF NONLINEAR DYNAMICAL SYSTEM

Aditya Wagh
Michigan Technological University, avwagh@mtu.edu

Copyright 2020 Aditya Wagh

Recommended Citation Recommended Citation
Wagh, Aditya, "DEEP LEARNING OF NONLINEAR DYNAMICAL SYSTEM", Open Access Master's Thesis,
Michigan Technological University, 2020.
https://doi.org/10.37099/mtu.dc.etdr/1062

Follow this and additional works at: https://digitalcommons.mtu.edu/etdr

 Part of the Acoustics, Dynamics, and Controls Commons

http://www.mtu.edu/
http://www.mtu.edu/
https://digitalcommons.mtu.edu/
https://digitalcommons.mtu.edu/etdr
https://doi.org/10.37099/mtu.dc.etdr/1062
https://digitalcommons.mtu.edu/etdr?utm_source=digitalcommons.mtu.edu%2Fetdr%2F1062&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/294?utm_source=digitalcommons.mtu.edu%2Fetdr%2F1062&utm_medium=PDF&utm_campaign=PDFCoverPages

www.manaraa.com

DEEP LEARNING OF NONLINEAR DYNAMICAL SYSTEM

By

Aditya V. Wagh

A THESIS

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

In Mechanical Engineering

MICHIGAN TECHNOLOGICAL UNIVERSITY

2020

© 2020 Aditya V. Wagh

www.manaraa.com

www.manaraa.com

This thesis has been approved in partial fulfillment of the requirements for the Degree

of MASTER OF SCIENCE in Mechanical Engineering.

Department of Mechanical Engineering-Engineering Mechanics

Thesis Advisor: Dr. Yongchao Yang

Committee Member: Dr. Zequn Wang

Committee Member: Dr. Pengfei Xue

Department Chair: Dr. William W. Predebon

www.manaraa.com

www.manaraa.com

Dedication

To my father, mother, teachers and friends

who didn’t hesitate to criticize my work at every stage - without which I would neither

be who I am nor would this work be what it is today. Great appreciation to all of

you for the constant support during the tough times throughout the year.

www.manaraa.com

www.manaraa.com

Contents

List of Figures . xi

List of Tables . xv

Abstract . xvii

1 Introduction . 1

1.1 Motivation . 5

2 Theory and Practice . 7

2.1 Nonlinear System Identification . 7

2.2 Neural Networks . 11

2.3 Duffing System . 13

3 Neural Networks . 17

3.1 Fundamentals of Neural Networks 17

3.2 Types of Neural Networks . 19

3.2.1 Deep Neural Network . 19

3.2.2 Convolutional Neural Networks 20

vii

www.manaraa.com

3.2.3 Recurrent Neural Networks 20

3.3 Long Short-Term Memory . 21

3.3.1 Encoder Decoder Architecture 24

3.4 Loss Function and Optimizer . 25

3.4.1 Loss Function . 25

3.4.2 Optimizer . 27

3.5 Training and Testing . 29

4 Numerical Study on Duffing Systems 33

4.1 1 DOF . 33

4.1.1 Non-linearity=0.5 . 33

4.1.2 Non-linearity=1 . 35

4.2 2 DOF . 37

4.3 Effect of window size . 37

4.4 Effect of Loss Function . 38

4.5 Effect of weights in loss function . 39

4.6 Testing for longer sequences . 39

5 Conclusion . 55

References . 57

A Sample Code . 65

A.1 LSTM main.py . 65

viii

www.manaraa.com

A.2 Helping Functions.py . 70

A.3 Prediction.py . 76

ix

www.manaraa.com

www.manaraa.com

List of Figures

2.1 A Black Box model layout used for system identification, where ut is

the system input at time t and yt is the corresponding system output.

The system output is fed back into the input in some cases. 8

2.2 Flow of Traditional Programming. Rule based modeling. 11

2.3 Basic methodology of Machine Learning. 11

2.4 Duffing system with 2 DOF. 13

2.5 Change in Frequency with Time in structural response of Duffing Sys-

tem. 14

3.1 Connections in a Deep Neural Network 18

3.2 Individual cell of LSTM depicting number of operations, cell memory

and cell activation states. 22

3.3 Expansion of one of the operations in the cell showing the computations

at root level. 22

3.4 LSTM model architecture for Training. 24

3.5 Picturing gradient descent on a loss function 28

3.6 Restacking sequences, creating training dataset for LSTM model . . 31

xi

www.manaraa.com

3.7 Mathematically representing input and output sub-sequences to LSTM

model . 31

3.8 Testing architecture for LSTM model. 32

4.1 Histogram of performance of Non-linearity=0.5 examples. 34

(a) with MSE . 34

(b) with MSE and normalization 34

4.2 Effect of optimized loss function on Non-linearity=0.5 examples. γ is

the correlation of predicted vs original sequence. 35

4.3 Non-linearity=0.5. γ is the correlation between original and predicted

sequence. 36

(a) Best performance on prediction 36

(b) Worst performance on prediction 36

4.4 Histogram of performance of Non-linearity=1 examples. 41

(a) with MSE . 41

(b) with MSE and normalization 41

4.5 Effect of optimized loss function on Non-linearity=1 examples. γ is

the correlation of predicted vs original sequence. 42

4.6 Non-linearity=1. γ is the correlation between original and predicted

sequence. 43

(a) Best performance on prediction 43

(b) Worst performance on prediction 43

xii

www.manaraa.com

4.7 Histogram of performance of Non-linearity=0.5 on first degree of free-

dom. 44

(a) with MSE . 44

(b) with MSE and normalization 44

4.8 Histogram of performance of Non-linearity=0.5 on second degree of

freedom. 45

(a) with MSE . 45

(b) with MSE and normalization 45

4.9 Best performance of Non-linearity=0.5 46

(a) first degree of freedom . 46

(b) second degree of freedom . 46

4.10 Worst performance and comparison of loss function of Non-

linearity=0.5 . 47

(a) first degree of freedom . 47

(b) second degree of freedom . 47

4.11 Histogram of performance of Non-linearity=1 on first degree of free-

dom. 48

(a) with MSE . 48

(b) with MSE and normalization 48

4.12 Histogram of performance of Non-linearity=1 on second degree of free-

dom. 49

xiii

www.manaraa.com

(a) with MSE . 49

(b) with MSE and normalization 49

4.13 Best performance of Non-linearity=0.5 50

(a) first degree of freedom . 50

(b) second degree of freedom . 50

4.14 Worst performance and comparison of loss function of Non-

linearity=1 . 51

(a) first degree of freedom . 51

(b) second degree of freedom . 51

4.15 1 DOF predicted response for extended time (150s). 52

(a) non-linearity of 0.5. 52

(b) non-linearity of 1. 52

4.16 First DOF predicted response of 2DOF system for extended

time(150s). 53

(a) non-linearity of 0.5. 53

(b) non-linearity of 1. 53

4.17 Second DOF predicted response of 2DOF system for extended

time(150s). 54

(a) non-linearity of 0.5. 54

(b) non-linearity of 1. 54

xiv

www.manaraa.com

List of Tables

4.1 Effect of hyperparameter on range of correlation values obtained on

testing dataset. 39

xv

www.manaraa.com

www.manaraa.com

Abstract

Data-driven approach, such as neural networks, is an alternative to traditional

parametric-model methods for nonlinear system identification. Recently, long Short-

Term Memory (LSTM) neural networks have been studied to model nonlinear dynam-

ical systems. However, many of these contributions are made considering that the

input to the system is known or measurable, which often may not be the case. This

thesis presents a method based on LSTM for output-only modeling, identification,

and prediction of nonlinear systems. Numerical study is performed and discussed on

Duffing systems with various cubic nonlinearity.

xvii

www.manaraa.com

www.manaraa.com

Chapter 1

Introduction

Non-linear systems in mechanical engineering, civil engineering, and other disciplines

are the systems whose behaviour is not proportional to their inputs, whereas linear

systems have proportional input-output relationships. Overall to say, most real-life

applications involve nonlinear systems. These type of systems do not have the prop-

erties of linear systems like additivity/superposition principle, which makes them

difficult to model and analyze. Nonlinear system identification thus remains a chal-

lenging task.

Identifying a system basically is mathematical modeling of the physical system, which

allows us to predict or simulate the behaviour of the system. While identifying the

system is a complex process, it usually follows a few steps [1]. The first step includes

1

www.manaraa.com

choosing the inputs or excitation signals, when available, to the system. Next, the

selection of the model form or architecture is a very challenging part of the process.

The final step usually involves the selection of the order of the model, which requires

expertise in domain knowledge. This is difficult often times and one of the goals of

this thesis is to provide an alternative to this step. Furthermore, selection of the

model structure and parameters may be automated but require interference from a

user or prior knowledge about the system, especially in the case of nonlinear systems.

Lastly, the identified model needs to be validated and tested before use. This process

of validation indicates quality of the model and its limitations.

Broadly categorizing the models for nonlinear systems into White Box, Black Box

and Grey Box modeling provides an initial step in system identification [2]. Based on

first principles, White Box modeling is the most effective way of modeling but rather

difficult as it requires accurate physics knowledge and is often time-consuming. More-

over, it is difficult to generalize the model to a variety of systems. An alternative to

such pure theoretical, physics-based modeling is Black Box modeling which charac-

terizes the model based only on experimental data. There is very little to no physics

knowledge required which makes it easy to use but at the risk of lesser interpretability.

This type of modeling provides path towards data-driven approach towards system

identification. In this thesis, a hybrid methodology, physics-informed data-driven

modeling through integrating Black Box models (deep neural networks) with generic

or incomplete prior physics knowledge, is explored for nonlinear system modeling and

2

www.manaraa.com

identification.

Recently research have emerged in data-driven nonlinear system identification using

machine learning [3] or neural networks. Neural networks is a type of data-driven

approach which is subset of black box modeling. Pioneering work includes Koopman

approximation of nonlinear system [4],[5] and linear embeddings of the nonlinear sys-

tems [6]. Specific applications of have also been shown using Long Short-Term Mem-

ory (LSTM) for identifying nonlinear systems examples [7] and [8] and predicting

structural seismic response using Deep LSTM [9],[10]. Although these applications

are successful they follow classic input-output modeling process for the systems where

inputs are explicitly known or can be measured [11] and [12]. Many of the times, how-

ever, only outputs or the system’s response can be measured. Output-only parametric

modeling of linear systems with known input and output response has been widely

studied, especially in output-only modal parameter estimation and analysis [13] [14].

Thus data-driven modeling of output-only nonlinear dynamic systems remains an

important problem to study.

This thesis aims to develop a LSTM neural network based method for modeling

output-only nonlinear dynamic systems. Specific deep Neural Network architecture

using LSTM and learning algorithm incorporating the physics of nonlinear dynamics

are developed and described in detail. A connection is made between LSTMs and

traditional modeling methods of nonlinear system identification.

3

www.manaraa.com

www.manaraa.com

1.1 Motivation

A broader perspective of this study is to establish a new physics-informed data-driven

modeling method for identifying nonlinear systems using output-only data and pre-

dicting their behaviour with data-driven modeling. The new approach may be scaled

to high-dimensional system response data, such as those captured by using a digital

camera, where the pixel of the camera represents a single sensor [15], as compared to

traditional point-based sensors. A continuous video encodes a time-varying response

of the structure and every pixel would be then a sensor capturing the time-varying

dynamic response of a (nonlinear) structure. Using a camera provides advantages like

high resolution, agility, remote working, and a wide coverage of structures/systems

simultaneously along with cheaper alternative to hardware sensors.

With the systems response as time sequences, the developed LSTM neural network

”sequence to sequence” model can be used to identify the nonlinear dynamic system

and then predict the future response of that structure. This is advantageous in moni-

toring the health of the structure remotely and continuously [16]. If the health of the

physical system deteriorates, its dynamical response can be captured and compared

with the prediction of the physical systems equivalent, LSTM neural network model.

Taking a small step towards the bigger goal, this thesis presents the development of

5

www.manaraa.com

an LSTM based data-driven approach for nonlinear system identification and demon-

strates its capability on Duffing systems. It provides an alternative to parametric

methods for identifying nonlinear dynamical systems. Physics-informed schemes are

incorporated in the loss function for optimizing the training and learning process for

the time-varying dynamics of nonlinear systems.

6

www.manaraa.com

Chapter 2

Theory and Practice

2.1 Nonlinear System Identification

Any real world system is a nonlinear and varies with time. Unlike linear systems,

the output and input are non-linearly related implying the high complexity of the a

nonlinear system. To deal with real world applications, modeling and identification of

nonlinear systems becomes crucial for design, manufacturing and testing of complex

systems.

The traditional way of nonlinear system identification is by transforming it into its

linear equivalent. There have also been contributions in characterizing the system

using Non-linear Normal Modes, see for instance [17] [18]. Similarly, Jacob Roll et

7

www.manaraa.com

al. add on an advanced estimator using Direct Weight Optimization to estimate

nonlinear system[19].

There are many models defined [2]. A black box models in particular tries to describe

the system behavior with mapping the input and output relationship. This method

is an alternative to traditional methods where physics of the system has to be known.

They make system identification simple and quicker. The general way of representing

a system by a black box model is by hypothesizing a functional relationship between

input and output as show in Figure 2.1.

Black box
Mathematical Function

ut

y t

Figure 2.1: A Black Box model layout used for system identification, where
ut is the system input at time t and yt is the corresponding system output.
The system output is fed back into the input in some cases.

Black Box modeling deals with a number of parameters to estimate a function. This

makes it easier, as it involves less knowledge of first principles but also difficult as

these parameters are hard to estimate and interpret. An overview of such models

have been covered in [20]. To solve the black box model, there are various classical

methods [21] and modern methods including neural networks [22].

8

www.manaraa.com

A special case of parametric black box modeling is NARMAX model which is char-

acterized by the equation (2.1). In this model the system output is considered as

function of past values of system input and prediction errors [23].

y(k) = F [y(k − 1), y(k − 2), y(k − ny),

u(k − d− 1), u(k − d− 2), ... u(k − d− nu),

e(k − 1), e(k − 2), ... e(k − ne)] + e(k) (2.1)

where y(k) is the system output, u(k) is the system input, e(k) is the prediction error,

d is the time delay,ny, nu, ne are the maximum lag of system output, input and error.

F is a nonlinear function. However, it is not always possible to know the system

input and the only information one has is of the system outputs. So modeling has to

be done using only system output. Thus the new equation looks like equation (2.2)

y(k) = F [y(k − 1), y(k − 2), y(k − ny),

e(k − 1), e(k − 2), ... e(k − ne)] + e(k) (2.2)

9

www.manaraa.com

This type of model is now an output only model and can be called as NARMA. Having

experimental data, we can now learn the function F. We can fit the past system out-

puts with current responses and then fitted model will represent the function F. This

data driven approach is very time efficient. Since we are fitting the model, a regres-

sion tool is the best fit for such problem, especially Multi Layer Perceptron (MLP).

According to Universal Approximation Theory, MLP architecture can approximate

any nonlinear function as long as the function is continuous.

10

www.manaraa.com

2.2 Neural Networks

In traditional programming, a model is created which is given Data and certain defined

rules and it produces answers. For example, Fibonacci sequence, where next number

is sum of past two numbers. The computer model follows the rule of adding past

two values to produce next value. However, in recent advances, the computer can be

taught to learn the rules, given data and answers, refer Figure 2.2. Such computer

models can approximately learn the rule of Fibonacci sequence provided enough data-

answer pairs. There is quite similarity between the Figure 2.1 and Figure 2.3. Thus

Neural Networks can represent the nonlinear function F in the equation (2.2).

Programming

Data

Rules

Answers

Figure 2.2: Flow of Traditional Programming. Rule based modeling.

Machine Learning

Data

Answers

Rules

Figure 2.3: Basic methodology of Machine Learning.

11

www.manaraa.com

According to Universal Approximation Theorem [24], neural networks can be used to

learn the nonlinearity from the system response. several advances and optimizations

have been proposed in using neural networks and gradient methods to learn/identify

nonlinear system [25],[26], [27],[28],[29]. Neural Networks can be used in any field

because of the flexibility to add domain knowledge while training. With optimized

training and loss function, the physics of the system can be learnt, thus making a

novel neural network model, see for instance [30] and [31]

Although MLP can be use to approximate nonlinear functions, when the data is in

the form of sequence, Recurrent Neural Networks have proven to be more efficient

and reliable [32]. RNNs has several types viz. the simple RNN, Gated-Recurrent

Unit(GRU) and Long short-term Memory(LSTM) with increasing complexity. The

simple RNN suffers from the problem of vanishing gradients when dealing with long

term sequences. So the advanced GRU and LSTM are used especially for tasks

involving speech signals, or music which are essentially a form of vibration [33].

Our attempt has shown that LSTM, a fundamental and complex form of basic RNN

can be used to approximate the nonlinear function similar to F of the NARMA model.

12

www.manaraa.com

2.3 Duffing System

Duffing system is a second order differential equation characterizing certain damped

and driven oscillations. We use this system to test our ideology. Being the funda-

mental of all nonlinear systems, if LSTM can represent output only Duffing system,

the method can be scaled to any other nonlinear dynamical system.

Figure 2.4: Duffing system with 2 DOF.

Figure 2.4 shows the spring-mass-damper diagram of the Duffing system. The same

can be mathematically explained with the equations (2.3) for 2 DOF, where x1 and

x2 are displacements of respective masses, ẋ and ẍ are the first and second order

derivatives of the displacements. The force component is zero as we are dealing with

free vibrations. The x3 term is the cubic non-linearity and is weighted 0.5 and 1 for

testing our ideology.

13

www.manaraa.com

ẍ1 + (0.02ẋ1 − 0.01ẋ2) + (2x1 − x2) + 0.5x31 = 0 (2.3)

ẍ2 + (0.02ẋ2 − 0.01ẋ1) + (2x2 − x1) = 0 (2.4)

Figure 2.5: Change in Frequency with Time in structural response of Duff-
ing System.

Time variant nonlinear dynamics: The response from the Duffing system can be

analysed with the Figure 2.5. The Frequency of the response is decreasing with time.

Thus the non-linearity of the system is observed maximum in the initial time after

excitation. The nonlinear behaviour decreases exponentially eventually becoming

linear. Thus training the neural network in the initial steps is more challenging and

we have trained the LSTM on the systems initial response. If LSTM model can

14

www.manaraa.com

sufficiently represent higher nonlinear behaviour then it’s expected to perform good

on the behaviour in the later time with weaker nonlinearity as well.

15

www.manaraa.com

www.manaraa.com

Chapter 3

Neural Networks

3.1 Fundamentals of Neural Networks

Neural Networks are combinations of neurons, where each neuron is a regression

equation like y = mx+ c. There are stacks of neurons which are called layers. Every

layer can have any number of neurons and thus this number is a hyper-parameter.

Each neuron in a layer is connected to every other neuron in its adjacent layer and

thus form a network. This can be visualized with the Figure 3.1. The layers apart

from input and output are called hidden layers. The number of hidden also being a

hyper-parameter, it is known to govern the ability of neural network to learn complex

features within an input. The regression equation with each neuron is characterized

17

www.manaraa.com

as,

alnl
= g(

nl∑
i=1

nl−1∑
j=1

[wl
ijXi + bij]) (3.1)

ŷ = g(

nl∑
j=1

wl+1
ij alj + bj) (3.2)

, where the w’s are equivalent to the m(slope) in the regression equation of line and

are known as weights. Thus every neuron is a weighted sum of input. These weights

are the characteristics of every neural network and are known to represent the learnt

neural networks. When a neural network learns, it means that these weights are

optimised. The b’s are called biases, equivalent to c of the equation of line. The are

embedded in the weights matrix while training the neural network.

...

a1
1

a2
1

a3
1

a4
1

a1
l

a2
l

a3
l

a4
l

x1

x2

ŷ

w 11
1

w 12
1

w
21
1

w 22
1

w
31
1

w 32
1

w
41
1w

42
1

w
11
l+1

w
12
l+1

w 13
l+1

w 1
4l+
1

Figure 3.1: Connections in a Deep Neural Network

The function g is called the activation function. As the name suggests, this function

controls whether to activate the neuron , meaning a non-zero value or to deactivate

the neuron, meaning assign zero value to the neuron. When a neuron is activated,

18

www.manaraa.com

the weighted sum of its inputs are carried forward for further computation. Usually

the activation functions used are tanh, sigmoid, or relu.

tanh(x) =
e2x − 1

e2x + 1

σ(x) =
1

ex + 1

relu(x) = max(0, x) (3.3)

The predicted output ŷ is essentially a complicated function of input X. This function

can be shown represent any nonlinear function. The combinations of such regression

functions or neurons can be used to learn features of certain type of data. The simple

Deep Neural Network is not effective in every situation and thus we explore different

types or architectures of neural networks [34].

3.2 Types of Neural Networks

3.2.1 Deep Neural Network

As represented in the Figure 3.1, this is the most fundamental architecture of neural

networks. Every advanced form of neural network is built on this architecture. The

19

www.manaraa.com

’DEEP’ is a term referring to multiple hidden layers between input and output layers.

With the use in traditional data fitting, flexibility of this architecture has made it

useful in nonlinear system representation.

3.2.2 Convolutional Neural Networks

These networks are advanced form of Deep Neural Networks where the emphasis is

on learning features in an image. A special operation of convolution is performed

between a designed filter and the image to learn the features. Convolutional Neural

Networks along with Deep Neural Networks are also effective in nonlinear system

identification [35].

3.2.3 Recurrent Neural Networks

A special form of neural network architecture which emphasises the learning of fea-

tures from a time sequence data. Recurrent Neural Networks(RNN), as the name

stands for, computes regression on every time step of the data. This helps its learn-

ing through each time step. This architecture is shown in Figure . As the length of

time sequence increases, RNN are found to be unreliable. The updating of weights in

any neural networks aims to minimize a loss function. More about this is explained

20

www.manaraa.com

the Section 3.5.

For larger time sequences, the loss function doesn’t optimize significantly and this

leads to the problem of vanishing gradient. The gradient meaning the change in loss

function with respect to the weights. Thus the weights do not update to better values

and the learning of this neural network reaches a stagnant point. To address this

problem Long Short-Term Memory neural networks are used, which have additional

computations to resolve the issue of vanishing gradients.

3.3 Long Short-Term Memory

Long Short-Term Memory(LSTM) [36] was rather invented before RNN however,

their use is profound in the recent years. The special elements in LSTM are the

memory states which allows retaining information from a given time step till the end

of the time sequence. This speciality of LSTM makes it much more efficient and

reliable. The individual cell can be visualised with Figure 3.2.

The Figure 3.3 shows that the LSTM is built on basic neural network architecture.

The LSTM gates viz. Forget gate, Update gate are responsible to pass on or forget the

vital information carried in the time series. The output gates influences the hidden

states that carry the information of dynamical system, with the vital information

21

www.manaraa.com

ELEMENT-WISE

ELEMENT-WISE

ELEMENT-WISE

c t−1 tanh (ct)
c t

ht−1

[ht−1 , X t]

X t

σ (W f [ht−1 , X t])

σ (W u[ht−1 , X t]) tanh (W c[ht−1 , X t])

σ (W o [ht−1 , X t])

ht

Figure 3.2: Individual cell of LSTM depicting number of operations, cell
memory and cell activation states.

 .
 .
 .

 .
 .
 .

X t

ht−1
σ (W o [ht−1 , X t])

na na

nd

Figure 3.3: Expansion of one of the operations in the cell showing the
computations at root level.

which is being carried throughout the series. Mathematically, the equations (3.4)

describe the operation in the Figure 3.2,

22

www.manaraa.com

c̃t = tanh(Wc[ht−1, Xt] + bc)

Γf = σ(Wf [ht−1, Xt] + bf)

Γu = σ(Wu[ht−1, Xt] + bu)

Γo = σ(Wo[ht−1, Xt] + bo)

ct = Γu ∗ c̃t + Γf ∗ ct−1

ht = Γo ∗ tanh(ct) (3.4)

Looking at our problem of representing nonlinear dynamical system with only output

known, it is a very good choice to use LSTM for two reasons viz. a) We can learn

dynamics with every time step of sequence essentially, without knowing the order of

the model. b) The equation (3.4) shows that the output is indirectly a nonlinear

function of the input.

Thus by fitting the data in an LSTM model, we can represent a nonlinear system

without knowing its actual order.

23

www.manaraa.com

3.3.1 Encoder Decoder Architecture

Since we only have output of the system, we have to use a specific architecture so that

LSTM can learn the dynamics. The idea is to use the given output response, break

into smaller sub sequences and teach the LSTM model to predict itself in future by

providing present time timesteps. This allows us to not only learn the dynamics but

also augment our data into larger dataset which helps in training the model.

To apply such self predicting methodology the best architecture is sequence to se-

quence model or also called as encoder-decoder model.

...

... ...

...

c t c t+1 c t+2 c t+w−1 c t+w c t+w +1

ht ht+1 ht+ 2 ht+w−1 ht+w ht+w+1

c t+w+2

ht+w+2

X t X t+1 X t+2

X t+w X t+w+1 X t+w+2

X t+2w X t+2w+1 X t+2w+2

X t+(n−1)w X t+(n−1)w+1 X t+(n−1)w+2

X t+w
p X t+w+1

p X t+w+2
p

X t+2w
p X t+2w+1

p X t+2w+2
p

X t+3w
p X t+3w+1

p X t+3w+2
p

X t+(n)w
p X t+(n)w+1

p X t+(n)w+2
p

Figure 3.4: LSTM model architecture for Training.

This architecture uses the encoder model to learn the sub-sequence we created and

then predict the next sub-sequence forward in time. The encoder is an LSTM cell as

24

www.manaraa.com

shown in Figure 3.2, which computes the regression function for every time step. Thus

the LSTM cell repeats itself as many number of times as the number of time step in

the sub sequence. After the last time step of the sub-sequence, the cell memory and

activation states are carried forward to the decoder. The decoder is another LSTM

cell which takes in the information of cell memory and activation states from last

time step of the previous sub-sequence, computes regression for every time step. As

the cell computes the regression for every time step, the information for every time

step is learnt uniquely. As shown in Figure 3.3 the output of LSTM cell is a layer

of neurons. This layer is converged into single neuron representing single time step.

For that we use the Dense layers which are nothing but few more layers of connected

neurons but the number of neurons decreases in numbers eventually reaching one.

3.4 Loss Function and Optimizer

3.4.1 Loss Function

A loss function calculates error of predicted data with the original data. This loss

function is the key to train a neural network for the specific purpose and application.

Loss function for classifications are different from loss functions for regression as the

expected output is binary or real numbers. The error calculated by the loss function

25

www.manaraa.com

is to be minimized. So the loss function needs to be continuous and differentiable.

Since we are predicting time sequence, the values are going to be real numbers, so its

best to use Mean Squared Error(MSE) loss function. This would teach the LSTM to

predict as close to the given values as possible.

Modification to the loss functions are necessary when dealing with special cases. Most

researchers modify the loss function to best learn the features of the given data. This

makes the neural network model more robust and reliable. We are using the Duffing

System to test our results. The responses have a changing frequency with time as

shown by the Figure 2.5. Moreover we break sequences into smaller sub-sequences

which creates a larger non uniformity in the scale of each sub-sequence. Some sub-

sequences with larger amplitude outweigh the sub-sequences with smaller amplitude.

Since the neurons calculate the weighted average of the inputs during regression,

the sub-sequences with smaller amplitude contribute very less towards updating the

weights of neural net.

L = α1(Lpred) + α2(Lnormpred) (3.5)

Lpred = ‖Xt −Xp
t ‖MSE (3.6)

Lnormpred = ‖(Xnorm)t − (Xp
norm)t‖MSE (3.7)

Xnorm =
X −max(X)

max(X)−min(X)
(3.8)

So we add a term in addition to the MSE loss function which makes sure the every

26

www.manaraa.com

sub-sequence contributes equally to the loss function. We normalize every predicted

and original sub-sequence to a constant scale of [0, 1], and then find the MSE again.

This term is added to the traditional MSE term with a factor controlling it’s influence

on the loss function. This factor is a hyperparameter and is decided after analyzing

the performance of the LSTM model. The new loss function looks like equation (3.5),

where α1andα2 are hyperparameters.

3.4.2 Optimizer

Optimizing is process where the weights are updated to minimize the loss function.

Imagine the a loss function with a graph shown in the Figure 3.5. Since the loss

function computes the error of prediction, the error needs to be minimum. Thus

taking the derivative of loss function with respect to parameter w updates the w to

reduce the loss. So the parameters w have to reach the minimum of the loss function.

This is achieved by iteratively updating the weights as shown in equation (3.9).

wt+1 = wt − η
dL
dw

(3.9)

This equation is also known as equation of gradient descent. The learning rate (η) is

the hyperparameter which governs the rate of convergence of loss to the minimum.

27

www.manaraa.com

Figure 3.5: Picturing gradient descent on a loss function

With every update of weights, the value of the weight closer to the minimum by a

factor of the learning rate. So, if this parameter is too large, the model will overshoot

the minimum, whereas keeping it too low, will lead to longer training time. However,

the loss function is not always this simple as shown in the Figure 3.5. As the function

gets complex, there is not always one minima. But, optimizing the weights to reach

the local minima has shown to suffice most of the times. Moreover, more advanced

optimizer have been developed to reach the minima. The most efficient is Adam

28

www.manaraa.com

optimizer [37]. The name is derived from ’adaptive moment estimation’.

mt+1 = β1mt + (1− β1)
dL
dw

vt+1 = β2vt + (1− β2)(
dL
dw

)2

wt+1 = wt − η ×
mt+1√
vt+1 + ε

(3.10)

,where β1 and β2 are hyper-parameters. This optimizer is a combination of ’gradient

descent with momentum’ and ’RMSprop’ optimizer and has proven to produce the

best results. Judging from the complexity of our data, we use Adam optimizer with

varying parameters mentioned in the results section.

3.5 Training and Testing

We use Tensorflow framework [38] and Keras [39] in Python environment to train

and test the model. Training is the crucial step in modeling the neural network.

This is the process when weights update iteratively fitting the data. The steps of

taking input, calculating regression functions, calculating the loss, and updating the

weights for the whole set of data is known as a epoch. With every epoch the weights

are optimized layer by layer in reverse. That means the weights of the neurons that

computes the final output are updated first and the weights of neurons that compute

regression of the first inputs are updated last. This is known as Back Propagation.

29

www.manaraa.com

In the case of LSTM, the weights of the Dense Layer of the Decoder with last time

step are updated first and then the ones with the previous time step and so on

till the weights of the neurons for the first time step in the encoder layer. Since

we are back propagating through time, it is known as back propagation through

time[BPTT]. This is an important characteristic of RNN. It is in this BPTT, RNN

experiences vanishing gradient problem. And since LSTM carries a separate cell

memory state, the information through forward time is retained for a longer sequence

of time separately and gradients don’t vanish.

Training for our architecture needs setting up of data. We have generated sequences

of Duffing system response. They are each broken down in sub-sequences of length

determined by the parameter window. After trading off with training time, and test

performance and considering length of at least one period of time sequence, we have

kept the length of window as 50. For time length of 50s and sampling frequency of 10

Hz, each sequence is of 500 time steps. We have 1000 such sequences. Out of the 1000

sequences, 950 are used for training and 50 are used for validation. Breaking every

sequence into sub-sequences creates 10 such sub-sequences for every sequence. Now,

since the idea is to self predict, the first sub-sequence predicts the next sub-sequence,

the set of the sub sequences is arranged as shown in the Figure 3.6. Meaning that

the first sequence is the input and the second sub-sequence is the output, and then

second sub-sequence is the input and the third is the output and so on.

30

www.manaraa.com

.

.

.

.

.

.

9*950=8550
Training Model Inputs

9*950=8550
Training Model outputs

Figure 3.6: Restacking sequences, creating training dataset for LSTM
model

So, for every sequence, we have 9 sets of training input and 9 set of training outputs.

Extending to every sequence, we have a total of 8550 sub-sequences which are now

treated as examples by the neural network. These are fed to the LSTM model shown

in Figure 3.7. The LSTM model is a representation of the Figure 3.4.

y (t+(n−1)w) , y (t+(n−1)w+1) ... y (t+nw−1) y (t+nw) , y (t+nw+1) ... y (t+(n+1)w−1)LSTM
MODEL

Figure 3.7: Mathematically representing input and output sub-sequences
to LSTM model

Same is done for validation sequences as well, creating 450 sub-sequences. The model

is then trained for 10000 epochs or until it starts to overfit. The phenomenon of

overfitting is observed when the loss on the validation dataset starts increasing than

loss on training dataset. If no overfitting is experienced the the model can be stopped

31

www.manaraa.com

Figure 3.8: Testing architecture for LSTM model.

training when the loss doesn’t seem to converge much with every epoch.

Testing of the model is done in a slightly different way. The model has learnt to predict

a time sequence of length of a window, which is 50. To create a longer sequence, the

predicted sub-sequence has to be fed back to encoder which will then predict the next

sub-sequence and so on. This can be visualized with the Figure 3.8.

The sub-sequences predicted are then concatenated to form the longer desired se-

quence. This whole sequence is then compared with the original sequence to test the

quality prediction results.

32

www.manaraa.com

Chapter 4

Numerical Study on Duffing

Systems

4.1 1 DOF

4.1.1 Non-linearity=0.5

For testing the hypothesis, we start with 1 DOF and 0.5 cubic non-linearity. The

following results show the effect of adding the optimizing normalization term in the

loss function. The concatenated sequences are used to check the quality of prediction.

It can be seen in the Figure 4.2 that even though the correlation γ is high enough, the

33

www.manaraa.com

actual prediction is not stable for sequence with lower amplitude. However, adding

the optimizing term solves that issue.

0.970 0.975 0.980 0.985 0.990 0.995 1.0000

200

400

600

800

1000

Nu
m

be
r o

f e
xa

m
pl

es

1 0 2 0 0 0 0 3 37

957

(a) with MSE

0.996 0.997 0.998 0.999 1.0000

100

200

300

400

500

600

700

Nu
m

be
r o

f e
xa

m
pl

es

2 1 3 5 11 11 11
68

213

675

(b) with MSE and normalization

Figure 4.1: Histogram of performance of Non-linearity=0.5 examples.

34

www.manaraa.com

10 20 30 40 50
Time [sec]

0.0100

0.0075

0.0050

0.0025

0.0000

0.0025

0.0050

0.0075

0.0100

Di
sp

la
ce

m
en

t [
m

]
1=0.968 2=0.999

Original MSE MSE with normalization

Figure 4.2: Effect of optimized loss function on Non-linearity=0.5 exam-
ples. γ is the correlation of predicted vs original sequence.

4.1.2 Non-linearity=1

For non-linearity of 1, similar steps of training and testing are repeated using higher

nonlinear data. The results align with the discussions from results of predictions

of examples with non-linearity of 0.5. Thus the LSTM model can also be used to

represent higher nonlinearity with excellent results. The Figures 4.4, 4.5 and 4.6

show the perform of LSTM model on high nonlinear Duffing system.

35

www.manaraa.com

10 20 30 40 50
Time [sec]

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Di
sp

la
ce

m
en

t [
m

]
1=0.999943 2=0.999999

Original MSE MSE with normalization

(a) Best performance on prediction

10 20 30 40 50
Time [sec]

2

1

0

1

2

Di
sp

la
ce

m
en

t [
m

]

1=0.994 2=0.996

Original MSE MSE with normalization

(b) Worst performance on prediction

Figure 4.3: Non-linearity=0.5. γ is the correlation between original and
predicted sequence.

36

www.manaraa.com

4.2 2 DOF

Testing for 2 DOF, we gave responses of both the DOF for 5 seconds as input to the

LSTM model and then the model predicting the next 5 seconds, which were fed back

as input to the LSTM network and so on till we predicted 50 seconds. The results

can be seen in the Figures 4.7 for first degree of freedom and in Figures 4.8 for second

degree of freedom. The hyperparameters in the loss function have to adjusted which

are mentioned in the code in Appendix A.1.

The Figures 4.9 depict the best predictions on test data set after concatenation of all

the sub-sequences while the Figures 4.10 show the effect of the loss function on the

worst performed sequence in the dataset.

4.3 Effect of window size

The hyperparameter window size has a physical significance when it comes to dy-

namical systems. It is the upper limit of the order of the system. While one needs

to determine the order of the system before using the parametric methods of sys-

tem identification, LSTM sequence to sequence model allows one to define the upper

limit of the order. The actual order of the system is learnt during the training of

37

www.manaraa.com

the model implicitly. To choose a value for this parameter, one must consider the

dataset available and sampling frequency used. The window size must not be lower

than the order of the system. Although choosing a higher size results in better pre-

diction, it is computationally inefficient to train a sequence to sequence model for

longer sequences.

4.4 Effect of Loss Function

The response of the duffing system, i.e the displacement vs time graph, decays to

zero exponentially. Since the system is nonlinear, the frequency of vibration also

decays to a constant value, that is when the nonlinear system transforms into a linear

system. This changing amplitude and frequency is to be learnt by the model in order

to learn the dynamics of the system. Dividing the response sequence into smaller

sub-sequences helps learning the changing frequency but it is still incomplete. The

changing amplitude must also be considered while learning the dynamics. In short,

the loss function must be such that the local dynamics of the sequence is learnt. The

breaking of sequences into smaller sequences, creates an uneven scale of data. To

weigh in every sub-sequence equally, we add another parameter to the loss function

which normalizes every sub-sequence. This helps learning the local dynamics which

is necessary for predicting long term sequences.

38

www.manaraa.com

4.5 Effect of weights in loss function

The loss function consists of two terms, one that measures closeness with actual and

predicted data while the other measures the closeness between normalized actual and

normalized predicted data. Although, both the terms are important, they must be

weighted, considering the uncommonness in the data. The data is a sub-sequence,

which can be of varied amplitude. The model prediction would largely get skewed

towards normalized data if the weights are equal. To keep the originality of the data

while also learning the local dynamics, we try various values for α2 in the loss function

as shown in the table 4.1.

2 DOF (first DOF) α2=0 α2 = 1e−4 α2 = 1e−5

Non-linearity=0.5 0.74-0.99 0.97-0.99 0.94-0.99
Non-linearity=1 0.986-0.999 0.996-0.999 0.995-0.999

Table 4.1
Effect of hyperparameter on range of correlation values obtained on testing

dataset.

4.6 Testing for longer sequences

One of the effect of using the proposed loss function is on long term predictions as the

model learns the local dynamics from the training sequence. The model is trained on

dataset containing dynamical responses of 50s and tested on long term prediction upto

39

www.manaraa.com

150s. Although the model is trained on dynamic response of 50s, while predicting,

only the initial 5s of response is known. Although, the model is assumed to have

learnt the dynamics to predict upto 50s, given proper training, predicting further

into future tests the real reliability of the model. The Figures 4.15, 4.16 and 4.17

show the results of 1 and 2 DOF duffing systems with the new loss function.

40

www.manaraa.com

0.992 0.994 0.996 0.998 1.0000

100

200

300

400

500

600

700

Nu
m

be
r o

f e
xa

m
pl

es

3 4 6 14 23 40 51 44 80

735

(a) with MSE

0.990 0.992 0.994 0.996 0.998 1.0000

100

200

300

400

500

600

700

800

Nu
m

be
r o

f e
xa

m
pl

es

5 2 2 4 8 8 13
54

125

779

(b) with MSE and normalization

Figure 4.4: Histogram of performance of Non-linearity=1 examples.

41

www.manaraa.com

10 20 30 40 50
Time [sec]

0.0100

0.0075

0.0050

0.0025

0.0000

0.0025

0.0050

0.0075

0.0100

Di
sp

la
ce

m
en

t [
m

]

1=0.994 2=0.999

Original MSE MSE with normalization

Figure 4.5: Effect of optimized loss function on Non-linearity=1 examples.
γ is the correlation of predicted vs original sequence.

42

www.manaraa.com

10 20 30 40 50
Time [sec]

1.5

1.0

0.5

0.0

0.5

1.0

1.5
Di

sp
la

ce
m

en
t [

m
]

1=0.999986 2=0.999998

Original MSE MSE with normalization

(a) Best performance on prediction

10 20 30 40 50
Time [sec]

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Di
sp

la
ce

m
en

t [
m

]

1=0.993 2=0.990

Original MSE MSE with normalization

(b) Worst performance on prediction

Figure 4.6: Non-linearity=1. γ is the correlation between original and
predicted sequence.

43

www.manaraa.com

0.70 0.75 0.80 0.85 0.90 0.95 1.000

200

400

600

800

1000
Nu

m
be

r o
f e

xa
m

pl
es

1 0 0 0 0 0 0 0 1

998

(a) with MSE

0.965 0.970 0.975 0.980 0.985 0.990 0.995 1.0000

200

400

600

800

1000

Nu
m

be
r o

f e
xa

m
pl

es

1 0 0 0 0 0 0 0 0

999

(b) with MSE and normalization

Figure 4.7: Histogram of performance of Non-linearity=0.5 on first degree
of freedom.

44

www.manaraa.com

0.75 0.80 0.85 0.90 0.95 1.000

200

400

600

800

1000

Nu
m

be
r o

f e
xa

m
pl

es

1 0 0 0 0 0 0 0 1

998

(a) with MSE

0.96 0.97 0.98 0.99 1.000

200

400

600

800

1000

Nu
m

be
r o

f e
xa

m
pl

es

1 0 0 0 0 0 0 0 0

999

(b) with MSE and normalization

Figure 4.8: Histogram of performance of Non-linearity=0.5 on second de-
gree of freedom.

45

www.manaraa.com

10 20 30 40 50
Time [sec]

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Di
sp

la
ce

m
en

t [
m

]

1=0.999984 2=0.9999996

Original MSE MSE with normalization

(a) first degree of freedom

10 20 30 40 50
Time [sec]

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Di
sp

la
ce

m
en

t [
m

]

1=0.999986 2=0.9999996

Original MSE MSE with normalization

(b) second degree of freedom

Figure 4.9: Best performance of Non-linearity=0.5

46

www.manaraa.com

10 20 30 40 50
Time [sec]

0.002

0.001

0.000

0.001

0.002
Di

sp
la

ce
m

en
t [

m
]

1=0.698430 2=0.965289

Original MSE MSE with normalization

(a) first degree of freedom

10 20 30 40 50
Time [sec]

0.002

0.001

0.000

0.001

0.002

Di
sp

la
ce

m
en

t [
m

]

1=0.740568 2=0.952653

Original MSE MSE with normalization

(b) second degree of freedom

Figure 4.10: Worst performance and comparison of loss function of Non-
linearity=0.5

47

www.manaraa.com

0.986 0.988 0.990 0.992 0.994 0.996 0.998 1.0000

200

400

600

800

1000
Nu

m
be

r o
f e

xa
m

pl
es

1 0 0 1 0 0 0 1 1

996

(a) with MSE

0.99600.99650.99700.99750.99800.99850.99900.99951.00000

200

400

600

800

1000

Nu
m

be
r o

f e
xa

m
pl

es

2 0 0 0 0 0 0 1 5

992

(b) with MSE and normalization

Figure 4.11: Histogram of performance of Non-linearity=1 on first degree
of freedom.

48

www.manaraa.com

0.988 0.990 0.992 0.994 0.996 0.998 1.0000

200

400

600

800

1000

Nu
m

be
r o

f e
xa

m
pl

es

1 0 0 1 0 0 0 0 2

996

(a) with MSE

0.996 0.997 0.998 0.999 1.0000

200

400

600

800

1000

Nu
m

be
r o

f e
xa

m
pl

es

2 0 0 0 0 0 0 1 1

996

(b) with MSE and normalization

Figure 4.12: Histogram of performance of Non-linearity=1 on second de-
gree of freedom.

49

www.manaraa.com

10 20 30 40 50
Time [sec]

1.0

0.5

0.0

0.5

1.0

Di
sp

la
ce

m
en

t [
m

]

1=0.999993 2=0.9999989

Original MSE MSE with normalization

(a) first degree of freedom

10 20 30 40 50
Time [sec]

1.0

0.5

0.0

0.5

1.0

Di
sp

la
ce

m
en

t [
m

]

1=0.999993 2=0.9999992

Original MSE MSE with normalization

(b) second degree of freedom

Figure 4.13: Best performance of Non-linearity=0.5

50

www.manaraa.com

10 20 30 40 50
Time [sec]

0.004

0.003

0.002

0.001

0.000

0.001

0.002

0.003

0.004
Di

sp
la

ce
m

en
t [

m
]

1=0.985381 2=0.996180

Original MSE MSE with normalization

(a) first degree of freedom

10 20 30 40 50
Time [sec]

0.004

0.003

0.002

0.001

0.000

0.001

0.002

0.003

0.004

Di
sp

la
ce

m
en

t [
m

]

1=0.987963 2=0.995849

Original MSE MSE with normalization

(b) second degree of freedom

Figure 4.14: Worst performance and comparison of loss function of Non-
linearity=1

51

www.manaraa.com

0 20 40 60 80 100 120 140
Time [sec]

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Di
sp

la
ce

m
en

t [
m

]

=0.999940

Original MSE with normalization

(a) non-linearity of 0.5.

0 20 40 60 80 100 120 140
Time [sec]

1.0

0.5

0.0

0.5

1.0

Di
sp

la
ce

m
en

t [
m

]

=0.999949

Original MSE with normalization

(b) non-linearity of 1.

Figure 4.15: 1 DOF predicted response for extended time (150s).

52

www.manaraa.com

0 20 40 60 80 100 120 140
Time [sec]

0.75

0.50

0.25

0.00

0.25

0.50

0.75
Di

sp
la

ce
m

en
t [

m
]

=0.9936618

Original MSE with normalization

(a) non-linearity of 0.5.

0 20 40 60 80 100 120 140
Time [sec]

2

1

0

1

2

Di
sp

la
ce

m
en

t [
m

]

=0.9972501

Original MSE with normalization

(b) non-linearity of 1.

Figure 4.16: First DOF predicted response of 2DOF system for extended
time(150s).

53

www.manaraa.com

0 20 40 60 80 100 120 140
Time [sec]

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Di
sp

la
ce

m
en

t [
m

]

=0.9939465

Original MSE with normalization

(a) non-linearity of 0.5.

0 20 40 60 80 100 120 140
Time [sec]

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Di
sp

la
ce

m
en

t [
m

]

=0.9978937

Original MSE with normalization

(b) non-linearity of 1.

Figure 4.17: Second DOF predicted response of 2DOF system for extended
time(150s).

54

www.manaraa.com

Chapter 5

Conclusion

The study in this thesis shows that LSTM informed by certain physics knowledge is a

feasible data-driven model for representing and identifying nonlinear dynamic system

with only system outputs. LSTM with model architecture of encoder-decoder can

model the dynamics of Duffing Systems with lower and higher non-linearity for both

single DOF and multiple DOFs. The scheme of using sub-sequences instead of the

complete time sequence, taking into account of the time-varying dynamics of nonlinear

system, is shown efficient with lesser data requirement. Moreover the additional term

in the loss function for weighting every sub-sequence with non-uniform amplitude is

introduced by considering the amplitude-dependent property of nonlinear dynamic

systems.

55

www.manaraa.com

Future work is considered to adapt the LSTM based approach for real-world applica-

tions such as learning the nonlinear dynamics from the structural response captured

by the digital camera. Also, there is potential to test the model reliability for system

with random excitation force. Moreover, the testing of this approach for variety of

nonlinear dynamical system is also one of the future goals.

56

www.manaraa.com

References

[1] O. Nelles, Nonlinear System Identification:from Classical Approaches to Neural

Network and Fuzzy Models. Berlin, Germany: Springer, 2001, pp. 1–19.

[2] J. Schoukens and L. Ljung, “Nonlinear system identification: A user-

oriented roadmap,” CoRR, vol. abs/1902.00683, 2019. [Online]. Available:

http://arxiv.org/abs/1902.00683

[3] K. Worden and P. Green, “A machine learning approach to nonlinear modal

analysis,” Mechanical Systems and Signal Processing, vol. 84, pp. 34–53, 2017.

[4] M. Korda and I. Mezić, “Linear predictors for nonlinear dynamical systems:

Koopman operator meets model predictive control,” Automatica, vol. 93, pp.

149–160, 2018.

[5] I. Mezić, “Spectrum of the koopman operator, spectral expansions in functional

spaces, and state-space geometry,” Journal of Nonlinear Science, pp. 1–55, 2019.

57

http://arxiv.org/abs/1902.00683

www.manaraa.com

[6] B. Lusch, J. N. Kutz, and S. L. Brunton, “Deep learning for universal linear

embeddings of nonlinear dynamics,” Nature Communications, vol. 9, no. 1, Nov

2018. [Online]. Available: http://dx.doi.org/10.1038/s41467-018-07210-0

[7] Yu Wang, “A new concept using lstm neural networks for dynamic system iden-

tification,” in 2017 American Control Conference (ACC), 2017, pp. 5324–5329.

[8] J. Gonzalez and W. Yu, “Non-linear system modeling using lstm neural net-

works,” IFAC-PapersOnLine, vol. 51, pp. 485–489, 2018.

[9] R. Zhang, Z. Chen, S. Chen, J. Zheng, O. Büyüköztürk, and H. Sun, “Deep long

short-term memory neural networks for nonlinear structural seismic response

prediction,” Computers and Structures, vol. 220, pp. 55–68, August 2019.

[10] R. Zhang, Y. Liu, and H. Sun, “Physics-informed multi-lstm networks for meta-

modeling of nonlinear structures,” ArXiv, vol. abs/2002.10253, 2020.

[11] R. J. Allemang, Vibrations: Experimental Modal Analysis, Structural Dynamics

Research Laboratory, University of Cincinnati, OH., 1999.

[12] W. Heylen, S. Lammens, and P. Sas, Modal Analysis Theory and testing. De-

partment of Mechanical Engineering, Katholieke Universiteit leuven, Leuven,

Belgium: Katholieke Universiteit Leuven, Belgium, 1995.

[13] B. Peeters and G. De Roeck, “Stochastic System Identification for Operational

Modal Analysis: A Review ,” Journal of Dynamic Systems, Measurement,

58

http://dx.doi.org/10.1038/s41467-018-07210-0

www.manaraa.com

and Control, vol. 123, no. 4, pp. 659–667, 02 2001. [Online]. Available:

https://doi.org/10.1115/1.1410370

[14] P. Bart and G. De Roeck, “Reference-based stochastic subspace identification for

output-only modal analysis,” Mechanical systems and signal processing, vol. 13,

no. 6, pp. 855–878, 1999.

[15] Y. Yang, C. Dorn, T. Mancini, Z. Talken, G. Kenyon, C. Farrar, and D. Mas-

careñas, “Blind identification of full-field vibration modes from video measure-

ments with phase-based video motion magnification,” Mechanical Systems and

Signal Processing, vol. 85, pp. 567–590, 2017.

[16] C. R. Farrar and K. Worden, “An introduction to structural health monitoring,”

Philosophical Transactions of the Royal Society A: Mathematical, Physical and

Engineering Sciences, vol. 365, no. 1851, pp. 303–315, 2007.

[17] G. Kerschen, K. Worden, A. Vakakis, and J.-C. Golinval, “Past, present and

future of nonlinear system identification in structural dynamics,” Mechanical

Systems and Signal Processing - MECH SYST SIGNAL PROCESS, vol. 20, pp.

505–592, 04 2006.

[18] M. Peeters, “Theoretical and experimental modal analysis of nonlinear vibrat-

ing structures using nonlinear normal modes,” Ph.D. dissertation, University of

Liege, 2010.

59

https://doi.org/10.1115/1.1410370

www.manaraa.com

[19] J. Roll, A. Nazin, and L. Ljung, “Nonlinear system identification via direct weight

optimization,” Automatica, vol. 41, pp. 475–490, 03 2005.

[20] J. Sjöberg, Q. Zhang, L. Ljung, A. Benveniste, B. Deylon, P. yves Glorennec,

H. Hjalmarsson, and A. Juditsky, “Nonlinear black-box modeling in system iden-

tification: a unified overview,” Automatica, vol. 31, pp. 1691–1724, 1995.

[21] K. Petsounis and S. Fassois, “Parametric time-domain methods for the identifica-

tion of vibrating structures - a critical comparison and assessment,” Mechanical

Systems and Signal Processing, vol. 15, pp. 1031–1060, 11 2001.

[22] A. Juditsky, H. Hjalmarsson, A. Benveniste, B. Delyon, L. Ljung, J. Sjöberg, and

Q. Zhang, “Nonlinear black-box models in system identification: Mathematical

foundations,” Automatica, vol. 31, no. 12, p. 1725–1750, 1995.

[23] S. A. Billings, Nonlinear System Identification: NARMAX Methods in the Time,

Frequency, and Spatio–Temporal Domains. Chichester, UK: John Wiley & Sons,

Ltd, 2013, pp. 1–11.

[24] B. C. Csáji et al., “Approximation with artificial neural networks,” Msc thesis,

Eötvös Loránd University, 2001.

[25] C. S. Huang, S. Hung, C. Wen, and T. Tu, “A neural network approach for

structural identification and diagnosis of a building from seismic response data,”

Earthquake Engineering ’—&’ Structural Dynamics, vol. 32, pp. 187 – 206, 02

2003.

60

www.manaraa.com

[26] K. S. Narendra and K. Parthasarathy, “Gradient methods for the optimization

of dynamical systems containing neural networks,” IEEE Transactions on Neural

Networks, vol. 2, no. 2, pp. 252–262, 1991.

[27] Q. Meng, W. Chen, Y. Wang, Z.-M. Ma, and T.-Y. Liu, “Convergence analysis

of distributed stochastic gradient descent with shuffling,” Neurocomputing, vol.

337, pp. 46–57, 2019.

[28] K. S. Narendra and K. Parthasarathy, “Identification and control of dynamical

systems using neural networks,” IEEE Transactions on Neural Networks, vol. 1,

no. 1, pp. 4–27, 1990.

[29] G. Lightbody and G. Irwin, “Multi-layer perceptron based modelling of nonlinear

systems,” Fuzzy Sets and Systems - FSS, vol. 79, pp. 93–112, 04 1996.

[30] M. Raissi, “Deep hidden physics models: Deep learning of nonlinear partial

differential equations,” The Journal of Machine Learning Research, vol. 19, no. 1,

pp. 932–955, 2018.

[31] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics informed deep learning

(part i): Data-driven solutions of nonlinear partial differential equations,” arXiv

preprint arXiv:1711.10561, 2017.

[32] L. Medsker and L. C. Jain, Recurrent Neural Networks: design and applications.

CRC Press, 1999.

61

www.manaraa.com

[33] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated

recurrent neural networks on sequence modeling,” 2014.

[34] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, 2015. [Online].

Available: https://doi.org/10.1038/nature14539

[35] Q. Teng and L. Zhang, “Data driven nonlinear dynamical systems identification

using multi-step cldnn,” AIP Advances, vol. 9, p. 085311, 08 2019.

[36] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural

Comput., vol. 9, no. 8, p. 1735–1780, Nov. 1997. [Online]. Available:

https://doi.org/10.1162/neco.1997.9.8.1735

[37] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR,

vol. abs/1412.6980, 2015.

[38] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,

G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg,

D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,

B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan,

F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,

and X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous

systems,” 2015, software available from tensorflow.org. [Online]. Available:

http://tensorflow.org/

62

https://doi.org/10.1038/nature14539
https://doi.org/10.1162/neco.1997.9.8.1735
http://tensorflow.org/

www.manaraa.com

[39] F. Chollet, “keras,” https://github.com/fchollet/keras, 2015.

63

https://github.com/fchollet/keras

www.manaraa.com

www.manaraa.com

Appendix A

Sample Code

The following code is written in Python using Jupyter Notebook. This code uses

Keras library for creating LSTM model and matplotlib to plot the results.

A.1 LSTM main.py

%matplotlib inline

from keras.models import Model

from keras.layers import CuDNNLSTM , Dense , Input , ←↩
Dropout

from keras.optimizers import Adam

from HelpingFunctions import *

65

www.manaraa.com

import matplotlib.pyplot as plt

import numpy as np

import time

t0 = time.time()

Input_data='Y'

number_of_points =500

number_of_example =950

val_m = 50

training_data = np.loadtxt('./data/←↩
SingleDOFDuffingInitial_LHSDESIGN_N =1_[-4,4] _train_ {}_←↩
{}*{}\

.csv'.format(Input_data ,number_of_points ,←↩
number_of_example),delimiter=',', dtype=np.float64)[:,←↩
np.newaxis]

validation_data = np.loadtxt('./data/←↩
SingleDOFDuffingInitial_LHSDESIGN_N =1_[-4,4]←↩
validation {}_{}*{}\

.csv'.format(Input_data ,number_of_points ,val_m),←↩
delimiter=',', dtype=np.float64)[:,np.newaxis]

print('Training data shape: ',training_data.shape)

number_of_features=training_data.shape[-1]

m=number_of_example

Tx=int(len(training_data)/number_of_example)

print('Length of each signal: ',Tx)

66

www.manaraa.com

window_size =50

window_shift=window_size

print('WINDOW SIZE: ',window_size)

print('WINDOW SHIFT: ',window_shift)

n_steps_in , n_steps_out = window_size , window_size

n_a =64

X_encoder ,X_decoder ,training_Y ,val_data = ready_data(←↩
training_data ,validation_data ,number_of_features ,m,←↩
val_m ,Tx,window_size ,window_shift ,n_steps_in ,←↩
n_steps_out ,normalization=False)

print('Encoder X shape: ',X_encoder.shape)

print('Encoder val_x shape: ',val_data [0][0]. shape)

print('Training Y shape: ',training_Y.shape)

print('Validation Y shape: ',val_data [1]. shape)

LSTM_cell_encoder = CuDNNLSTM(n_a , return_state = True ,←↩
name ='Encoder ')

LSTM_cell_decoder = CuDNNLSTM(n_a , return_sequences = ←↩
True , return_state = True ,name='Decoder ')

dense_1 = Dense(32, activation='relu',name='Dense_1 ')

dense_2 = Dense(number_of_features ,name='Dense_2 ')

def duffingModel(n_steps_in , n_steps_out , ←↩
number_of_features):

"""

Arguments

67

www.manaraa.com

n_steps_in -- number of timesteps input to encoder.

n_steps_out -- number of timesteps input to decoder.

number_of_features -- number of variables that make ←↩
up a time -step.

Returns

model -- a keras model

"""

encoder_X = Input(shape=(n_steps_in ,←↩
number_of_features))

decoder_X = Input(shape=(n_steps_out ,←↩
number_of_features))

X_e=encoder_X

X_d=decoder_X

a_e ,h_e ,c_e = LSTM_cell_encoder(X_e)

a_d ,h_d ,c_d = LSTM_cell_decoder(X_d , initial_state =[←↩
h_e ,c_e])

out = dense_1(a_d)

output = dense_2(out)

model = Model(inputs =[encoder_X , decoder_X], outputs←↩
=output)

return model

###################################

TensorFlow wizardry

config = tf.ConfigProto ()

68

www.manaraa.com

Don't pre -allocate memory; allocate as-needed

config.gpu_options.allow_growth = True

Only allow a total of half the GPU memory to be ←↩
allocated

config.gpu_options.per_process_gpu_memory_fraction = 0.5

Create a session with the above options specified.

K.tensorflow_backend.set_session(tf.Session(config=←↩
config))

###################################

Train_model = duffingModel(n_steps_in , n_steps_out , ←↩
number_of_features)

learning_rate = 0.01

opt = Adam(lr=learning_rate , beta_1 =0.9, beta_2 =0.999 , ←↩
decay =0.01)

Train_model.compile(loss=custom_loss ,optimizer=opt)

train_error =[]

validation_error =[]

######################################

epochs =10000

for epoch in range(epochs):

t1=time.time()

print('EPOCH: {}/{}'.format(epoch+1,epochs))

fitted_model=Train_model.fit([X_encoder , X_decoder],←↩
training_Y ,

69

www.manaraa.com

validation_data=←↩
val_data , batch_size←↩
=30, epochs=1, ←↩
verbose =0)

train_error.extend(fitted_model.history['loss'])

validation_error.extend(fitted_model.history['←↩
val_loss '])

if (epoch +1) %100 ==0:

plt.plot(np.log(train_error))

plt.plot(np.log(validation_error))

plt.show()

t2=time.time()

print('Time for this epoch: {:0.2f} minutes '.format←↩
((t2-t1)/60))

t3 = time.time()

total = (t3-t0)/60

print("\nTotal time: {:0.2f} minutes".format(total))

A.2 Helping Functions.py

import numpy as np

import tensorflow as tf

import keras.backend as K

import matplotlib.pyplot as plt

def shuffle(x,y,d,M):

70

www.manaraa.com

'''

Arguments

x -- encoder input

y -- target data

d -- decoder input

M -- number of examples

Returns

shuffled_x , shuffled_y , shuffled_d -- Shuffled ←↩
examples within the data

'''

create list of indices [0 ,1 ,2...]

indices=np.arange(M)

np.random.shuffle(indices)

shuffled_x=np.zeros(x.shape)

shuffled_y=np.zeros(y.shape)

shuffled_d=np.zeros(d.shape)

for i in range(M):

shuffled_x[i,:,:]=x[indices[i],:,:]

shuffled_y[i,:,:]=y[indices[i],:,:]

shuffled_d[i,:,:]=d[indices[i],:,:]

return shuffled_x ,shuffled_y ,shuffled_d

def restack_data(sequence , n_steps_in , n_steps_out ,step)←↩
:

71

www.manaraa.com

X, y = list(), list()

x_in = 0

y_out = 0

count = 0

while y_out < len(sequence):

x_out = x_in + n_steps_in

y_in = x_out

y_out = y_in + n_steps_out

seq_x , seq_y = sequence[x_in:x_out], sequence[←↩
y_in:y_out]

x_in = x_in + step

X.append(seq_x)

y.append(seq_y)

count +=1

return np.array(X), np.array(y),count

def normalize(data ,m,Tx ,number_of_features):

data = data.reshape(m,Tx,number_of_features)

Max = np.max(data ,axis =(1 ,2),keepdims=True)

Min = np.min(data ,axis =(1 ,2),keepdims=True)

scaled_data = -1+2*(data -Min)/(Max -Min)

scaled_data = scaled_data.reshape(-1,←↩
number_of_features)

return scaled_data

72

www.manaraa.com

def ready_data(training_data ,validation_data ,←↩
number_of_features ,m,val_m ,Tx,window_size ,window_shift←↩
,n_steps_in ,n_steps_out , normalization):

,,n_s = restack_data(training_data [0:Tx ,0], ←↩
n_steps_in , n_steps_out ,window_shift)

for i in range(m):

plt.plot(training_data[i*Tx:i*Tx+Tx ,0])

plt.show()

#normalizing the data

if normalization:

training_data = normalize(training_data ,m,Tx,←↩
number_of_features)

for i in range(m):

plt.plot(training_data[i*Tx:i*Tx+Tx ,0])

plt.show()

validation_data = normalize(validation_data ,←↩
val_m ,Tx,number_of_features)

print('\n\nEACH EXAMPLE IS NORMALIZED\n\n')

Restacking data in the shape (number of examples , ←↩
number of samples , n_steps_in)

X0 = np.zeros((m, n_s , n_steps_in , ←↩
number_of_features))

Y0 = np.zeros((m, n_s , n_steps_out , ←↩
number_of_features))

D0 = np.zeros((m, n_s , n_steps_out , ←↩
number_of_features))

val_X0 = np.zeros((val_m , n_s , n_steps_in , ←↩
number_of_features))

73

www.manaraa.com

val_Y0 = np.zeros((val_m , n_s , n_steps_out , ←↩
number_of_features))

val_D0 = np.zeros((val_m , n_s , n_steps_out , ←↩
number_of_features))

for i in range(m):

for j in range(number_of_features):

X0[i,:,:,j], Y0[i,:,:,j], n_s = restack_data←↩
(training_data[Tx*i:Tx*i+Tx,j], n_steps_in←↩
, n_steps_out ,window_shift)

for i in range(val_m):

for j in range(number_of_features):

val_X0[i,:,:,j], val_Y0[i,:,:,j], n_s = ←↩
restack_data(validation_data[Tx*i:Tx*i+Tx ,←↩
j], n_steps_in , n_steps_out ,window_shift)

print('X shape: ',X0.shape)

print('validation X shape: ',val_X0.shape)

Training ,validation sets

x = X0.reshape(-1,X0.shape [2],X0.shape [3])

y = Y0.reshape(-1,Y0.shape [2],Y0.shape [3])

d = D0.reshape(-1,D0.shape [2],D0.shape [3])

shuffle all examples

x,y,d=shuffle(x,y,d,x.shape [0])

val_x = val_X0.reshape(-1,val_X0.shape[2], val_X0.←↩
shape [3])

val_y = val_Y0.reshape(-1,val_Y0.shape[2], val_Y0.←↩
shape [3])

74

www.manaraa.com

val_d = val_D0.reshape(-1,val_D0.shape[2], val_D0.←↩
shape [3])

val_data = [[val_x ,val_d],val_y]

return x,d,y,val_data

def max_freq(y):

w=50

y=tf.cast(y,tf.complex64)

ft = tf.signal.fft(y)

freq = tf.constant(np.linspace (0,10/2,int(w/2)),←↩
dtype=tf.float32) # given sampling freq = 10

fft = abs(ft[:,0:int(w/2)])* (2/w)

indices = tf.argmax(fft ,axis=-1)

Freq = tf.map_fn(lambda x: freq[x],indices ,dtype=tf.←↩
float32)

return Freq

def normalize_tensor(y):

ymin=tf.reduce_min(y,axis=(-1,-2),keepdims=True)

ymax=tf.reduce_max(y,axis=(-1,-2),keepdims=True)

y_n = (y-ymin)/(ymax -ymin)

return y_n

def custom_loss(y_true ,y_pred):

alpha_1 = 1

alpha_2 = 0.000005

print('\n\nALPHA 2 : ',alpha_2 ,'\n\n')

#F_actual_1 = max_freq(y_true [:,:,0])

75

www.manaraa.com

#F_pred_1 = max_freq(y_pred [:,:,0])

y_true_N = normalize_tensor(y_true)

y_pred_N = normalize_tensor(y_pred)

loss_value = K.mean(K.square(y_true -y_pred),axis=-1)←↩
+ alpha_2*K.mean(K.square(y_true_N -y_pred_N),axis←↩

=-1) #+ 0.0001*K.mean(K.square(F_actual_1 -F_pred_1←↩
),axis=-1)

return loss_value

A.3 Prediction.py

######################################

%matplotlib inline

from numpy import array

from keras.models import Model , load_model

from keras.layers import CuDNNLSTM , Dense , Input , Lambda←↩
, Reshape

from keras.optimizers import Adam

import keras.backend as K

from sklearn.preprocessing import MinMaxScaler

import tensorflow as tf

import matplotlib.pyplot as plt

import numpy as np

import time

t0 = time.time()

76

www.manaraa.com

###################################

TensorFlow wizardry

config = tf.ConfigProto ()

Don't pre -allocate memory; allocate as-needed

config.gpu_options.allow_growth = True

Only allow a total of half the GPU memory to be ←↩
allocated

config.gpu_options.per_process_gpu_memory_fraction = 0.5

Create a session with the above options specified.

K.tensorflow_backend.set_session(tf.Session(config=←↩
config))

###################################

Input_data='Y'

number_of_points =500

number_of_example =1000

data = np.loadtxt('./data/←↩
SingleDOFDuffingInitial_LHSDESIGN_N =1_[-4,4] _test_ {}_←↩
{}*{}\

.csv'.format(Input_data ,number_of_points ,←↩
number_of_example),delimiter=',', dtype=np.float64)[:,←↩
np.newaxis]

print(data.shape)

number_of_features=data.shape[-1]

77

www.manaraa.com

m=number_of_example

Tx=int(len(data)/number_of_example)

window_size =50

n_steps_in , n_steps_out = window_size , window_size

Ty=Tx # length of predicted signal

n_s = int((Ty-window_size)/window_size)

def normalize(data ,m,Tx ,number_of_features):

data = data.reshape(m,Tx,number_of_features)

Max = np.max(data [:,:50,:], axis =(1,2),keepdims=True)

Min = np.min(data [:,:50,:], axis =(1,2),keepdims=True)

scaled_data = -1+2*(data [:,:50,:]-Min)/(Max -Min)

scaled_data = scaled_data.reshape(-1,←↩
number_of_features)

return scaled_data

testing_data = data #normalize(data ,m,Tx,←↩
number_of_features)

print('Testing data shape: ',testing_data.shape)

number of activation units in LSTM

n_a =64

Creating instances of LSTM and other layers. Default ←↩
activation in CuDNNLSTM is tanh

LSTM_cell_encoder = CuDNNLSTM(n_a , return_state = True ,←↩
name ='Encoder ')

78

www.manaraa.com

LSTM_cell_decoder = CuDNNLSTM(n_a , return_sequences = ←↩
True , return_state = True ,name='Decoder ')

dense_1 = Dense(32, activation='relu',name='Dense_1 ')

dense_2 = Dense(number_of_features ,name='Dense_2 ')

def CreateDuffing(n_s , n_steps_in , n_steps_out , ←↩
number_of_features):

"""

Arguments

n_s -- number of samples after using window.

n_steps_in -- number of timesteps input to encoder.

n_steps_out -- number of timesteps input to decoder.

number_of_features -- number of variables that make ←↩
up a time -step.

Returns

model -- a keras model

"""

encoder_X = Input(shape=(n_steps_in ,←↩
number_of_features))

X_e = encoder_X

decoder_X = Input(shape=(n_steps_out ,←↩
number_of_features))

X_d = decoder_X

a_e ,h_e ,c_e = LSTM_cell_encoder(X_e)

a_d ,h_d ,c_d = LSTM_cell_decoder(X_d , initial_state =[←↩
h_e ,c_e])

out = dense_1(a_d)

output = dense_2(out)

79

www.manaraa.com

duffing_model = Model(inputs =[encoder_X ,decoder_X], ←↩
outputs=output)

return duffing_model

Duffing_model = CreateDuffing(n_s , n_steps_in , ←↩
n_steps_out , number_of_features)

Duffing_model.load_weights('Duffing_Model_1DOF_N =1_←↩
[-4,4] _Y_custom loss_v3 .1.5.5 _Tx=500,\

TrainEx =950, ValEx=50, MOVINGwindow =50 _STEP =50 _epochs←↩
=10000 _lr =0.01. h5')

#Tx=50

predicted_2=np.zeros((m,500, number_of_features))

for example in range(m):

X_test = testing_data[example*Tx:example*Tx+←↩
n_steps_in]. reshape(1,n_steps_in ,←↩
number_of_features)

predictions =[]

for n in range(n_s):

decoder_input=np.zeros((1, n_steps_out ,←↩
number_of_features))

prediction = Duffing_model.predict ([X_test ,←↩
decoder_input])

prediction = array ([np.squeeze(i) for i in ←↩
prediction])

X_test=prediction.reshape(1,n_steps_in ,←↩
number_of_features)

predictions.extend(prediction.reshape(n_steps_in←↩
,number_of_features))

predicted_2[example ,n_steps_in :,:]= predictions

80

www.manaraa.com

predicted_2[example ,:n_steps_in ,:]= testing_data[←↩
example*Tx:example*Tx+n_steps_in]. reshape(1,←↩
n_steps_in ,number_of_features)

t3 = time.time()

total = (t3-t0)/60

print("Total time: {:0.2f} minutes".format(total))

##

#CALCULATING ERROR

%matplotlib inline

MSE_1 =[]

MSE_2 =[]

for example in range(m):

MSE_1.append(np.mean((testing_data[example*Tx+←↩
n_steps_in:example*Tx+Tx ,0]- predicted_1[example ,←↩
n_steps_in :,0]) **2))

MSE_2.append(np.mean((testing_data[example*Tx+←↩
n_steps_in:example*Tx+Tx ,0]- predicted_2[example ,←↩
n_steps_in :,0]) **2))

NMSE_1 =[]

NMSE_2 =[]

for example in range(m):

x = testing_data[example*Tx+n_steps_in:example*Tx+Tx←↩
,0]

y_1 = predicted_1[example ,n_steps_in :,0]

Sx_1=(np.sum((x-np.mean(x))**2) /(450 -1))

NMSE_1.append(np.mean((x-y_1)**2)/Sx_1)

81

www.manaraa.com

y_2 = predicted_2[example ,n_steps_in :,0]

NMSE_2.append(np.mean((x-y_2)**2)/Sx_1)

crcf_1 =[]

crcf_2 =[]

for example in range(m):

coeff = np.corrcoef(testing_data[example*Tx+←↩
n_steps_in:example*Tx+Tx ,0], predicted_1[example ,←↩
n_steps_in :,0])

crcf_1.append(coeff [0 ,1])

coeff = np.corrcoef(testing_data[example*Tx+←↩
n_steps_in:example*Tx+Tx ,0], predicted_2[example ,←↩
n_steps_in :,0])

crcf_2.append(coeff [0 ,1])

#######################################

PLOTTING RESULTS

plt.plot(MSE_1)

print('Max error: ',max(MSE_1))

print('Example number with max mse: ',np.argmax(MSE_1))

print('Min error: ',min(MSE_1))

print('Example number with min mse: ',np.argmin(MSE_1))

plt.title('MSE Y1')

plt.show()

example=np.argmax(MSE_1)

coeff = np.corrcoef(testing_data[example*Tx+n_steps_in:←↩
example*Tx+Tx ,0], predicted_1[example ,n_steps_in :,0])

plt.plot(testing_data[example*Tx+n_steps_in:example*Tx+←↩
Tx ,0], label='Actual ')

82

www.manaraa.com

plt.plot(predicted_1[example ,n_steps_in :,0], label='←↩
Predicted ')

plt.title('Worst mse example Y1\nExample: {} CRCF: ←↩
{:0.7f}\nMSE: {:0.7f} NMSE: {:0.7f}'.format(example ,←↩
coeff[0,1],MSE_1[example],NMSE_1[example]))

plt.show()

example=np.argmin(MSE_1)

coeff = np.corrcoef(testing_data[example*Tx+n_steps_in:←↩
example*Tx+Tx ,0], predicted_1[example ,n_steps_in :,0])

plt.plot(testing_data[example*Tx+n_steps_in:example*Tx+←↩
Tx ,0], label='Actual ')

plt.plot(predicted_1[example ,n_steps_in :,0], label='←↩
Predicted ')

plt.title('Best mse example Y1\nExample: {} CRCF: {:0.7←↩
f}\nMSE: {:0.7f} NMSE: {:0.7f}'.format(example ,coeff←↩
[0,1], MSE_1[example],NMSE_1[example]))

plt.show()

#####################################

plt.plot(NMSE_1)

print('Max error: ',max(NMSE_1))

print('Example number with max NMSE: ',np.argmax(NMSE_1←↩
))

print('Min error: ',min(NMSE_1))

print('Example number with min NMSE: ',np.argmin(NMSE_1←↩
))

print('Mean of NMSE: ',np.mean(NMSE_1))

plt.title('NMSE Y1')

plt.show()

example=np.argmax(NMSE_1)

83

www.manaraa.com

coeff = np.corrcoef(testing_data[example*Tx+n_steps_in:←↩
example*Tx+Tx ,0], predicted_1[example ,n_steps_in :,0])

plt.plot(testing_data[example*Tx+n_steps_in:example*Tx+←↩
Tx ,0], label='Actual ')

plt.plot(predicted_1[example ,n_steps_in :,0], label='←↩
Predicted ')

plt.title('Worst NMSE example Y1\nExample: {} CRCF: ←↩
{:0.7f}\nMSE: {:0.7f} NMSE: {:0.7f}'.format(example ,←↩
coeff[0,1],MSE_1[example],NMSE_1[example]))

plt.show()

example=np.argmin(NMSE_1)

coeff = np.corrcoef(testing_data[example*Tx+n_steps_in:←↩
example*Tx+Tx ,0], predicted_1[example ,n_steps_in :,0])

plt.plot(testing_data[example*Tx+n_steps_in:example*Tx+←↩
Tx ,0], label='Actual ')

plt.plot(predicted_1[example ,n_steps_in :,0], label='←↩
Predicted ')

plt.title('Best NMSE example Y1\nExample: {} CRCF: ←↩
{:0.7f}\nMSE: {:0.7f} NMSE: {:0.7f}'.format(example ,←↩
coeff[0,1],MSE_1[example],NMSE_1[example]))

plt.show()

######################################

n,bins ,_ = plt.hist(crcf_1)

no_of_bins = len(n)

for i in range(no_of_bins):

plt.text(bins[i],n[i],str(n[i]))

plt.grid(axis='y')

plt.xlabel('Correlation Coefficient ')

plt.ylabel('Number of Examples ')

plt.title('crcf Y1')

84

www.manaraa.com

plt.show()

example=np.argmin(crcf_1)

plt.plot(testing_data[example*Tx+n_steps_in:example*Tx+←↩
Tx ,0], label='Actual ')

plt.plot(predicted_1[example ,n_steps_in :,0], label='←↩
Predicted ')

plt.title('Worst crcf example Y1\nExample: {} CRCF: ←↩
{:0.7f}\nMSE: {:0.7f} NMSE: {:0.7f}'.format(example ,←↩
crcf_1[example],MSE_1[example],NMSE_1[example]))

plt.show()

example=np.argmax(crcf_1)

plt.plot(testing_data[example*Tx+n_steps_in:example*Tx+←↩
Tx ,0], label='Actual ')

plt.plot(predicted_1[example ,n_steps_in :,0], label='←↩
Predicted ')

plt.title('Best crcf example Y1\nExample: {} CRCF: ←↩
{:0.7f}\nMSE: {:0.7f} NMSE: {:0.7f}'.format(example ,←↩
crcf_1[example],MSE_1[example],NMSE_1[example]))

plt.show()

85

	DEEP LEARNING OF NONLINEAR DYNAMICAL SYSTEM
	Recommended Citation

	Contents
	List of Figures
	List of Tables
	Abstract
	Introduction
	Motivation

	Theory and Practice
	Nonlinear System Identification
	Neural Networks
	Duffing System

	Neural Networks
	Fundamentals of Neural Networks
	Types of Neural Networks
	Deep Neural Network
	Convolutional Neural Networks
	Recurrent Neural Networks

	Long Short-Term Memory
	Encoder Decoder Architecture

	Loss Function and Optimizer
	Loss Function
	Optimizer

	Training and Testing

	Numerical Study on Duffing Systems
	1 DOF
	Non-linearity=0.5
	Non-linearity=1

	2 DOF
	Effect of window size
	Effect of Loss Function
	Effect of weights in loss function
	Testing for longer sequences

	Conclusion
	References
	Sample Code
	LSTM main.py
	Helping Functions.py
	Prediction.py

